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Vacuum energy density in arbitrary background fields

M Bordag† and J Lindig‡
University of Leipzig, Institute for Theoretical Physics, Augustusplatz 10, 04109 Leipzig,
Germany

Received 26 February 1996

Abstract. The vacuum expectation value of the energy-momentum tensor of a real scalar
field in the presence of an arbitrary scalar background field is considered. The problem of
renormalization is treated in detail. In the special case of a background field depending on one
coordinate only, we give an explicit integral representation for the renormalized vacuum energy.
Three explicit examples illustrate the use of this representation as well as some properties of the
vacuum energy density. We find that a twice continuously differentiable background potential
leads to a continuous energy density.

1. Introduction

The analysis of quantum vacuum effects can be divided into local and global investigations.
The divergences play a crucial role in this analysis. They are all local. The traditional subject
for investigations are manifolds with sharp boundaries (i.e. conductor boundary conditions
on the surface of a metallic body). In the past few years there has been an increasing interest
in more general or, in the context of applications, more realistic boundaries: penetrable walls
[1, 2], soft and semihard boundaries [3]. The next step in this direction is the investigation of
a general background field which can be deformed in order to model boundaries of various
weakness. This is of particular interest for the study of the backreaction problem. The
boundaries or background fields are classical objects whose dynamics will be influenced by
the vacuum fluctuations of all the quantum fields which may be present in that background.
With respect to this there is an essential difference between smooth background fields and
boundary conditions. While smooth fields do have their own dynamics (i.e. a finite classical
action) boundary conditions do not. The reason is simply that a deformation of a smooth
background field into a sharp boundary (e.g. the deformation of a smeared out potential
wall into a rectangular wall and, further, into a delta function which can be represented by
specific boundary conditions) requires an infinite amount of energy. Nevertheless, sharp
boundaries are capable of describing reasonable physics (e.g. the Casimir effect [4]). In
view of this we consider the study of this transition as an interesting problem and emphasize
the role of a local consideration. There are at least two further reasons to do so. The first
reason is that some local divergences arising in such a transition disappear in a calculation
which is global from the very beginning. The second reason is the necessity to deal with
local quantities in the semiclassical theory of gravity when inserting vacuum polarization
contribution into the right-hand side of the Einstein equations [5].
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In the present paper we consider a scalar fieldϕ in flat (3 + 1)-dimensional spacetime
interacting with a classical background field8(x). The renormalization which is known
in general in terms of the corresponding heat-kernel coefficients [6] is analysed in detail,
especially the role of the renormalization of a contribution to the classical action which
constitutes a complete derivative is emphasized. In order to discuss the above-mentioned
transition from a smooth background field to sharper boundaries we consider the special
case of a background field8(x3) depending on one coordinatex3 only and perform explicit
calculations for three explicit examples:

(i) 82 is a piecewise quadratic function
(ii) 82 is a piecewise linear function
(iii) 82 is a piecewise constant function (‘square wall’).
Whereas the background field in the first case has a finite classical energy, in the second

and third cases it does not (the kinetic energy is infinite). It is interesting to observe that
in all three cases the expectation value of the energy-momentum tensor shows a divergent
behaviour as a function ofx3, whereas the global energy in these cases does not contain
divergences and behaves very similarly in all these cases.

For our investigations we choose the simplest model which contains all terms necessary
for the renormalization. It is described by the Lagrange density

L = 1
28(−∂µ∂µ − M2 − λ82)8 + 1

2ϕ(−∂µ∂µ − m2 − λ′82)ϕ (1)

where ϕ denotes the quantized scalar field.8 is a classical84-self-interacting field
modelling the background interaction via the identificationV (x) = λ′82. Thus, the
interaction with the external system leads to the modified equation of motion

(∂µ∂µ + m2 + V (x))ϕ = 0 (2)

rather than to boundary conditions. The global vacuum energy for this model has been
calculated in [7]. Here we are interested in the vacuum expectation value of the EMT of
the whole system which can conveniently be represented by

〈0|Tµν |0〉 = ∂µ8∂ν8 − 1
2gµν(∂ρ8∂ρ8 − M282 − λ84)

+
[(

∂yµ
∂xν − 1

2
gµν∂yρ

∂ρ
x + gµν

m2

2
+ gµν

λ′

2

)
1

i
G(x, y)

]
x=y

(3)

whereG(x, y) denotes the causal propagatorG(x, y) = i〈0|T ϕ(x)ϕ(y)|0〉. Covariant point
splitting serves as a temporary regularization.

The paper is organized as follows. In section 2 we solve the problem of renormalization
by utilizing the heat-kernel-expansion of the propagator. The needed coefficients and their
derivatives are calculated. In section 3 we restrict ourselves to background fields which
depend on one coordinate only. We construct an integral representation of the renormalized
vacuum expectation value of the EMT in terms of the corresponding one-dimensional
scattering basis. The counter-terms of the preceding section are recovered. Section 4
contains three examples which allow for an explicit representation of the scattering basis
in terms of special functions. We calculate numerically the energy density as well as the
pressure. The behaviour of the energy density in the vicinity of points of discontinuity of
the potential or its derivatives is discussed in detail. We conclude with a brief summary of
the results.

2. Renormalization

The term in the square brackets in equation (3) represents the contribution of the quantum
field ϕ to the vacuum EMT of the whole system. It diverges for coinciding arguments and
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needs to be renormalized. It is expressed entirely in terms of the causal propagator. The
heat-kernel expansion [5, 6, 10] provides us with the appropriate technique to isolate the
counter-terms.

The heat kernel of a self-adjoint operatorD̂ satisfies the Schrödinger equation

i
∂

∂t
K(x, y|t) = D̂K(x, y|t) (4)

along with the initial condition

K(x, y|0) = δ(x − y). (5)

The corresponding Green’s function is related to the heat-kernel through the equality

G(x, y) = i
∫ ∞

0
K(x, y|t) dt. (6)

In the present case the operatorD̂ is given byD̂ = ∂µ∂µ + m2 + V (x) and equation (4)
specializes to

i
∂

∂t
K(x, y|t) = (∂µ∂µ + m2 + V (x))K(x, y|t). (7)

For V ≡ 0 the solution obeying initial condition (5) is explicitly known

K0(x, y|t) = −i

(4πt)2
exp

[
−i

(
m2t + (x − y)2

4t

)]
. (8)

We now representK(x, y|t) by

K(x, y|t) = H(x, y|t)K0(x, y|t). (9)

The initial condition (5) impliesH(x, y|0) = 1. H(x, y|t) is known to have the following
asymptotic expansion fort → 0:

H(x, y|t) ≈
∞∑

n=0

an(x, y)(it)n a0 = 1. (10)

Substituting the ansatz (9) into the equation of motion (7), one obtains a recurrence relation
for the coefficientsan(x, y):(

∂µ

(x − y)2

2
∂µ + n + 1

)
an+1(x, y) + (∂µ∂µ + V (x))an(x, y) = 0. (11)

Taking into account the initial conditiona0 = 1, this relation allows for the computation
of the coefficientsan(x, y) and their derivatives with respect tox and y for coinciding
argumentsx = y to any desired ordern. Subsequent differentiation of equation (11) is
necessary during this process. For example, the coefficienta1(x, x) is obtained by taking
the limit y → x in equation (11)

(n + 1)an+1(x) = −(∂µ∂µan)(x) − V (x)an(x). (12)

Then, puttingn = 0 results ina1(x, x) = −V (x). We just display the coefficients and
derivatives which contribute to the counter-terms when renormalizing〈0|Tµν |0〉

a0(x) = 1

a1(x) = −V (x)

a2(x) = 1
2

(
1
3∂µ∂µV (x) + V 2(x)

)
(∂κ

y ∂ν
x a1)(x) = − 1

6∂κ
y ∂ν

x V (x)

(∂κ
y ∂ν

x a2)(x) = 1
3

[
1
10∂

κ∂ν∂µ∂µV + 1
2V ∂κ∂νV + 3

4(∂κV )(∂νV )
]
(x).

(13)
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We now turn to the calculation of the Green’s function. Inserting (8) and (9) into
equation (6) we obtain

G(x, y)s = 0(1 + s)µ2s

(4π)2

∞∑
n=0

an(x, y)in+s

∫ ∞

0
dt tn+s−2e−i(m2t+(x−y)2/4t) (14)

where the parameters has been introduced as a regularization. The factorµ2s ensures
correct dimensions. The limits → 0 removes the regularization. Utilizing the integral
representation of the second class Hankel function (Im(z) < 0)

H(2)
p (z) = ip+1

π

∫ ∞

0
du u−(p+1) exp

[
− i

2
z

(
u + 1

u

)]
(15)

the expression (14) can be cast into the compact form

G(x, y)s = 0(1 + s)µ2s

16π

∞∑
n=0

an(x, y)
( z

2m2

)n+s−1
H

(2)

n+s−1(z) (16)

with the abbreviationz =
√

m2(x − y)2. See e.g. [5, 8]. We are now in a position to
calculate the contribution of the quantum fieldϕ to the vacuum expectation value of the
EMT according to equation (3). The result is (s > 2)

〈T µν(x)〉s0 = 0(1 + s)µ2s

16π2

∞∑
n=0

(2m2)1−n−s

[
2n+s−20(n + s − 2)an(x, x)m2gµν

+2n+s−10(n + s − 1)

[
gµν

2
(m2 + V (x))an(x, x) + (∂µ

y ∂ν
x an)(x)

−gµν

2
gλρ(∂

λ
y ∂ρ

x an)(x)

]]
. (17)

Here we have used the property

lim
z→0

(zpH (2)
p (z)) = i

π
2p0(p) ∀p Re(p) > 0 (18)

when performing the limity → x. The right-hand side of equation (17) is an analytic
function of s in the half plane Re(s) > 2. It can be continued analytically to the rest of the
complex plane with simple poles ats = 0, 1, 2 and the negative integers. When removing
the regularizations → 0, pole terms occur in the first three summands of expression (17)
only. We denote them by〈T µν〉div

0 and expand them around the points = 0. Inserting the
heat-kernel coefficients calculated above yields

〈T µν〉div
0 = 1

16π2

[
− m4

4
gµν

(
1

s
− 2C + 1

2
+ ln

µ2

m2

)
− m2

2
V (x)gµν

(
1

s
− 2C + ln

µ2

m2

)
−1

4
V 2(x)gµν

(
1

s
− 2C − 1 + ln

µ2

m2

)
+1

6
(−∂µ∂νV + gµν∂ρ∂

ρV )

(
1

s
− 2C + 1

2
+ ln

µ2

m2

)
+ V

4m2
gµν

(
1

3
∂ρ∂

ρV + V 2

)
+ gµν

12
∂ρ∂

ρV

+ 1

m2

(
∂µ
y ∂ν

x a2 − gµν

2
gλρ∂

ρ
y ∂λ

x a2

)
+ o(s)

]
. (19)
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C denotes Euler’s constantC = 0, 577. . .. The structure of the pole terms in this expression
is to be investigated next. The first term which is independent of the potentialV (x) is
identified with the usual free space contribution. According to the common procedure, its
removal can be interpreted as a renormalization of the cosmological constant. Remembering
the definitionV (x) = λ′82, we find that the terms containingV andV 2, respectively, are
proportional to the terms−gµν M2

2 82 and−gµν λ
284 of the classical part of the EMT. Hence,

they can be absorbed in a renormalization of the massM and the coupling constantλ of
the classical background field8. The term containing derivatives forms a total divergence

−∂µ∂νV + gµν∂ρ∂
ρV = ∂ρ(−gµρ∂νV + gµν∂ρV ). (20)

The expression in the brackets on the right-hand side is antisymmetric in the indicesν

and ρ. We are free to add those terms to the canonical EMT. If we choose, for instance,
the expression

κ

2
(−∂µ∂ν82 + gµν∂ρ∂

ρ82) (21)

we can get rid of the remaining pole term via a renormalization of the constantκ. It should
be mentioned that the total divergence term does not consequently occur in the calculation
of the global vacuum energy [7].

As for the normalization conditions we demand that the contribution of the quantum
field to the EMT vanishes for zero potentialV ≡ 0. This simply refers to the removal of
the constant term. The normalization condition for the remaining terms is chosen so that
the EMT of the quantum system does not contain contributions proportional to the classical
terms. With these conditions in hand we arrive at the following renormalization of the
constants of the classical system8

M2 −→ M2 − m2λ′

16π2

(
1

s
− 2C + ln

µ2

m2

)
λ −→ λ − λ′2

32π2

(
1

s
− 2C − 1 + ln

µ2

m2

)
κ −→ κ + λ′

48π2

(
1

s
− 2C + ln

µ2

m2

)
.

(22)

The vacuum expectation value of the EMT of the whole system (3) has been renormalized
in terms of the constants of the classical system8. The necessity of the embedding of the
quantum fieldϕ in the classical background8 has become evident.

3. The special case of a one-dimensional background field

In this section we restrict ourselves to the investigation of background potentials depending
on one coordinate only, for instanceV (x) = V (x3). We construct an integral representation
for the ground state energy density as well as for the vacuum pressure. We assume that the
potential decreases sufficiently fast at infinity in order for scattering theory to be applicable.

Separation of variables in the equation of motion (2) becomes possible if the background
potential is one-dimensional. The solutions corresponding to the directions of unbroken
translational invariance are free plane waves. It remains to consider the one-dimensional
Schr̈odinger equation

[∂2
x3

+ k2 − V (x3)]ϕ(x3) = 0 (23)
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with the abbreviationk2 = k2
0 − k2

1 − k2
2 − m2. The kα, α = 0, 1, 2 are the momenta of

the free directions. The full propagatorG3(x3, y3) can be expressed through the Green’s
function of the one-dimensional problem (23)

G(x, y) =
∫

d3kα

(2π)3
exp[ikα(xα − yα)]G3(x3, y3) α = 0, 1, 2 (24)

whereG3(x3, y3) satisfies

[∂2
x3

+ k2 − V (x3)]G3(x3, y3) = −δ(x3 − y3). (25)

According to the theory of Sturm–Liouville, the Green’s functionG3(x3, y3) can be
represented in terms of an integral basis of equation (23) which is subject to appropriate
boundary conditions

G3(x3, y3) = 1

W(ϕ1, ϕ2)
[θ(y3 − x3)ϕ1(y3)ϕ2(x3) + θ(x3 − y3)ϕ1(x3)ϕ2(y3)]. (26)

W(ϕ1, ϕ2) denotes the Wronski determinant. The boundary conditions have to be chosen
in such a way that equation (24) yields the causal propagator. It turns out that the correct
choice is the so-called scattering basisϕ1(x3), ϕ2(x3) satisfying the asymptotic conditions

ϕ1(x3) ∼
x3→−∞ eikx3 + s12e−ikx3 ϕ1(x3) ∼

x3→∞ s11eikx3

ϕ2(x3) ∼
x3→−∞ s22e−ikx3 ϕ2(x3) ∼

x3→∞ e−ikx3 + s21eikx3.
(27)

The vacuum expectation value of the EMT can now be expressed in terms of the scattering
basis. We just have to substitute the propagator (24) together with expression (26) into the
defining equation (3). Due to the symmetry of the problem,〈0|Tµν |0〉 appears to have only
two independent components. In particular we find

〈T 00(x3)〉0 = 1

2i

∫
d3kα

(2π)3

(2k2
0 − k2 + V )ϕ1ϕ2 + ϕ′

1ϕ
′
2

W(ϕ1, ϕ2)
(28)

and

〈T 33(x3)〉0 = 1

2i

∫
d3kα

(2π)3

(k2 − V )ϕ1ϕ2 + ϕ′
1ϕ

′
2

W(ϕ1, ϕ2)
. (29)

Of course, these quantities have not yet been renormalized. The integrals (28) and (29)
are ultraviolet divergent. The counter-terms need to be isolated. This can be achieved by
asymptotically expanding the integrand. However, knowledge of the asymptotic behaviour
of the scattering basis which obeys the asymptotic conditions (27) becomes necessary.
The problem can be resolved if the fact is taken into account that the counter-terms are of
purely local nature. It is therefore sufficient to consider background potentials with compact
support, i.e.

V (x3) = 0 if x3 /∈ [−d1, d2]. (30)

In this case, it is possible to incorporate the conditions (27) explicitly according to

ϕ1(x) =


eikx + s12e−ikx x 6 −d1

α1u(x) + β1v(x) −d1 6 x 6 d2

s11eikx d2 6 x

(31)

and

ϕ2(x) =


s22e−ikx x 6 −d1

α2u(x) + β2v(x) −d1 6 x 6 d2

e−ikx + s21eikx d2 6 x

(32)
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whereu(x), v(x) denotes an arbitrary basis of equation (23). We just writex instead ofx3

in what follows. We have to demand that the scattering wavesϕi and their first derivatives
be continuous at the pointsx = −d1, d2. Thus we get a system of linear equations for
the coefficientssij , αi and βi . This system is solved by standard methods. As a result,
everything is expressed entirely in terms of the arbitrary basisu(x), v(x). For example, the
energy density for−d1 < x < d2 is given by

〈T 00(x)〉s0 = µ2s

2

∫
d3k

(2π)3

1

2γ 1+2s

[
α1α2

s11
([γ 2 − 2k2

4 + V ]u2(x) + u′2(x))

+β1β2

s11
([γ 2 − 2k2

4 + V ]v2(x) + v′2(x))

+α1β2 + α2β1

s11
([γ 2 − 2k2

4 + V ]u(x)v(x) + u′(x)v′(x))

]
(33)

where a Wick rotationk0 → ik4, k → iγ = i
√

k2
4 + k2

1 + k2
2 + m2 has been performed.

The factorγ −2s serves as a regularization and is removed in the limits → 0. The basis
u(x), v(x) can be chosen to have an appropriate asymptotic behaviour. After the Wick
rotation it satisfies the equation

[∂2
x3

− γ 2 − V (x3)]ϕ(x3) = 0. (34)

We make an ansatz for a solution exhibiting exponential behaviour for large values ofγ

u(x) = eγ x
∞∑

n=0

un(x)γ −n. (35)

The equation of motion yields the recurrence differential equation

0 = 2∂un+1 + ∂2un − V un (36)

for the coefficientsun(x). With the initial conditionu0 = 1, they can be computed to any
order. For instance, we find

u1(x) = 1
2

∫ x

dt V (t). (37)

A linear independent solution is obtained fromu(x) by substitutingγ → −γ . The
asymptotic expansion of the energy density yields the following terms contributing to the
counter-terms (Re(s) > 2)

〈T 00〉div
s = µ2s

2

∫
d3k

(2π)3

1

2γ 1+2s

×
[
−2k2

4 + k2
4

γ 2
V (x) − 1

γ 2

V ′′(x)

4
+ k2

4

γ 4

(
1

4
V ′′(x) − 3

4
V 2(x)

)]
. (38)

Analytical continuation and expansion arounds = 0 leads to the following pole terms

〈T 00〉div
s = 1

16π2

[
− 1

4
m4

(
1

s
+ 3

2
+ ln 4

µ2

m2

)
− 1

2
m2V (x)

(
1

s
− 1 + ln 4

µ2

m2

)
−1

6
V ′′(x)

(
1

s
− 5

3
+ ln 4

µ2

m2

)
− 1

4
V 2(x)

(
1

s
− 8

3
+ ln 4

µ2

m2

)
+ o(s)

]
.

(39)
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Thus we have recovered the counter-terms found in the preceding section. The normalization
conditions explained there apply here as well. Then, the renormalization reads

M2 −→ M2 − m2λ′

16π2

(
1

s
− 1 + ln 4

µ2

m2

)
λ −→ λ − λ′2

32π2

(
1

s
− 8

3
+ ln 4

µ2

m2

)
κ −→ κ + λ′

48π2

(
1

s
− 5

3
+ ln 4

µ2

m2

)
.

(40)

The purely local dependence of the counter-terms on the potential permits us to re-express
the renormalized vacuum expectation value of the EMT in terms of the scattering basis.
Consequently, the validity of the following expression for the renormalized energy density
can be extended to potentials with unbounded support.

〈T 00(x)〉ren0 =
∫ ∞

0

dr r2

(2π)2

[
(γ 2 − 2

3r2 + V )ϕ1ϕ2 + ϕ′
1ϕ

′
2

W(ϕ1, ϕ2)

+ 1

2γ

{
2

3
r2 − 1

3

r2

γ 2
V + 1

γ 2

1

4
V ′′ − 1

3

r2

γ 4

(
1

4
V ′′ − 3

4
V 2

)} ]
. (41)

The vacuum pressure〈T 33(x3)〉0 is treated in exactly the same fashion. We just list the
result

〈T 33(x)〉ren0 =
∫ ∞

0

dr r2

(2π)2

[−(γ 2 + V )ϕ1ϕ2 + ϕ′
1ϕ

′
2

W(ϕ1, ϕ2)
+ 1

2γ

{
2γ 2 + V (x) − 1

γ 2

1

4
V 2(x)

}]
.

(42)

We have found an integral representation in terms of the scattering basis for the renormalized
vacuum expectation value of the EMT in the case of a background field depending on one
coordinate only.

4. Examples

In this section we calculate the energy density and the vacuum pressure for three simple
symmetric background potentials. These examples illustrate the typical behaviour of the
energy density at points of discontinuity of the potential. In all three cases the integral basis
u, v can be expressed in terms of special functions.

The first example is the square well potential given by

V (x) =
{

V0 |x| 6 d

0 otherwise.
(43)

It is discontinuous at the pointsx = ±d. The basisu, v is conviently chosen as

u(x) = exp
(√

γ 2 + V0x
)

v(x) = exp
(−√

γ 2 + V0x
)
. (44)

The corresponding ground state energy density〈T 00〉0 and pressure〈T 33〉0 are shown in
figure 1.

In the case of the piecewise linear potential

V (x) =

 V0

(
1 − |x|

d

)
|x| 6 d

0 otherwise
(45)
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Figure 1. 〈T 00〉0 (thick full curve) and〈T 33〉0

(thin full curve) for the square well potential
(broken line) withm = d = 1 andV0 = 10−3.

Figure 2. 〈T 00〉0 (thick full curve) and
〈T 33〉0 (thin full curve) for the piecewise
linear potential (broken line) withm = d = 1
andV0 = 10−3

the basisu, v can be expressed in terms of Airy functions [11]

u(x) = Ai

(
γ 2

η2
± η(d − |x|)

)
v(x) = B i

(
γ 2

η2
± η(d − |x|)

)
(46)

with the abbreviationη = (
|V0|
d

)1/3. The first derivative is discontinuous at the points
x = ±d. The groundstate energy density and the pressure are displayed in figure 2.

The third example is the piecewise oscillatory potential

V (x) =

 V0

(
1 − |x|

d

)2

|x| 6 d

0 otherwise

(47)

with its second derivative being discontinuous atx = ±d. Here one finds foru, v

u(x) = U

(
γ 2

2η2
,
√

2η(d − |x|)
)

v(x) = U

(
γ 2

2η2
, −

√
2η(d − |x|)

)
(48)

whereU(k, x) denotes a standard solution of Kummer’s equation [11]. Here, the constant
η takes the valueη = (|V0|/d)1/4. Figure 3 shows the corresponding energy density and
the pressure.

Some remarks are in order. As expected, the ground state energy density and the
pressure vanish at infinity owing to the fact that the potentialV has been assumed suitable
for scattering theory to apply, i.e.V decreases sufficiently fast at infinity.
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Figure 3. 〈T 00〉0 (thick full curve) and〈T 33〉0

(thin full curve) for the piecewise oscillatory
potential (broken line) withm = d = 1 and
V0 = 10−3

The pressure〈T 33(x)〉ren0 is continuous and vanishes identically outside the support of
the potentialV . In contrast, the energy density exhibits singularities at the pointsx = 0, ±d

(see figures 1–3), i.e. at points of discontinuity of the potential or its derivatives. The origin
of these singularities is revealed when the renormalized energy density is expanded in terms
of the distance from these points. Using the asymptotic expansion (35) of the basisu, v,
the expression (41) for the renormalized energy density can be split into a part converging
uniformly with respect tox and a part which does not. After some involved calculations
we find

〈T 00(x)〉ren0 = 1

8π2

[
− 1

12

e−2m(|x|−d)

(|x| − d)2
V (d) + e−2m(|x|−d)

(|x| − d)

{
1

12
V ′(d) − m

6
V (d)

}
−2

3
ln(2m(|x| − d))

{
1

4
V 2(d) − 1

8
V ′′(d)

}]
+ f.T . (49)

for |x| > d and for |x| < d

〈T 00(x)〉ren0 = 1

8π2

[
1

12

e−2m(d−|x|)

(d − |x|)2
V (d)

+e−2m(d−|x|)

(d − |x|)
{

m

6
V (d) + 1

12
V ′(d) − 1

6
V (d)

∫ d

x

dt V (t)

}
−2

3
ln(2m(d − |x|))

{
1

2
V (d)V (|x|) − 1

4
V 2(d) + 1

8
V ′′(d)

−1

4
V ′(d)

∫ d

x

dt V (t) + 1

4
V (d)

( ∫ d

x

dt V (t)

)2}
−e−2m|x|

|x|
1

6
V ′(0) − 2

3
ln(2m|x|)V ′(0)

1

2

∫ x

0
dt V (t)

]
+ e.T . (50)

for |x| < d. With these relations in hand we are in a position to explain the behaviour of
the energy density at the pointsx = 0, ±d.

Three different terms appear which give rise to a singularity atx = ±d. The term
proportional to(|x| − d)−2 is caused by the discontinuity of the potential itself. The term
with (|x| − d)−1 appears due to a jump of the first derivative, whereas the logarithmic
singularity comes from a discontinuous second derivative. The examples are chosen in
order to demonstrate the respective terms in leading order.

For brevity’s sake, the expansions (49) and (50) have been specialized to symmetric
potentials. Consequently, only an odd derivative can be discontinuous atx = 0, explaining
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the fact that only the first derivative contributes to the singularity atx = 0 in equation (50).
We can state that the energy density is continuous if the potential and its first and second
derivative are continuous.

In [12] the behaviour of the vacuum expectation value of the EMT is studied. There,
the fields are subject to sharp boundary conditions on arbitrary surfaces. It is found that
the EMT diverges likeε−s , s = 1, 2, 3, 4 on the surface, whereε measures the distance
from the surface. The coefficients of each power ofε are given by certain geometric
characteristics of the surface. The singularities arising in our problem may be viewed in
analogy to that situation. If the potential is discontinuous, we have to demand the scattering
basisϕ1, ϕ2 to be continuous at those points. This is nothing else but demanding it to
satisfy boundary conditions. Thus, the singularities just reflect the idealized nature of a
discontinuous potential. The singularities are absent if the background potential is twice
continuously differentiable.

5. Summary

The vacuum expectation value of the EMT of a real scalar field in classical backgroundV (x)

has been investigated. Utilizing the heat-kernel expansion, the problem of renormalization
has been solved for arbitrary scalar potentials. The necessity of the embedding in the
classical system8 has been emphasized.

In the particular case of a background potential depending on one coordinate only we
were able to find an integral representation for the renormalized vacuum expectation value
of the EMT in terms of the scattering basis. The ground state energy density and the
vacuum pressure have been calculated explicitly for three distinct examples. The energy
density has been found to diverge at points of discontinuity of the potential, its first and
second derivative, respectively. A twice continuously differentiable background potential
results in a continuous ground state energy density.
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